Yves-Henri Sanejouand

UFIP, UMR 6286 du CNRS, Bat.25, Bureau 8, Faculte des Sciences et des Techniques, 2, rue de la Houssiniere, 44322 Nantes Cedex 3, France. Tel: +33 (0) 2 51 12 57 76; e-mail: Yves-Henri.Sanejouand at univ-nantes (fr).

Reload several times to see, at random, my face (at rest, at work abroad, at work in my previous lab), a Discrete Breather poping up or jumping to another site (within the frame of a non-linear network model of proteins), a N-neighbor Elastic Network Model, a water channel inside a glycoside hydrolase, or the predicted 3D domain-swapping motion of CD4...

Most of my work has turned around the (normal, harmonic, linear, or not) modes of proteins and their relationship with function. However, I also worked a bit on the sequence-structure relationship, as well as on parametrization, and used standard methods to study various systems, like antibodies, parvalbumin or the CD4 (I am also interested in other fields). Recently, within the frame of a collaboration with the glycobiology team of UFIP, I focused on glycoside hydrolases.

Protein normal modes:

Mahajan, S. & Sanejouand, Y.H. (2015): "On the relationship between low-frequency normal modes and the large-scale conformational changes of proteins", Archives of Biochemistry and Biophysics, vol.567, p59-65 (DOI 10.1016). A short review, with some emphasis on the applications derived from this relationship.

Sanejouand, Y.H. (2015): "Simplified flexibility analysis of proteins" in Computational Approaches to Protein Dynamics: from Quantum to Coarse-Grained Methods, p154-177, Monika Fuxreiter ed., CRC Press; arXiv:1312.5639 (q-bio.BM). A short review, with some emphasis on the interest of the highest-frequency modes of protein elastic networks.

Sanejouand, Y.H. (2012): "Elastic Network Models: Theoretical and Empirical Foundations" in Biomolecular simulations: Methods and Protocols, Methods in Molecular Biology, vol.924, p601-616, Emppu Salonen, Luca Monticelli eds, Humana Press, Springer; arXiv:1102.2402 (q-bio.BM).

Sanejouand, Y.H. (2007): "Les modes normaux de vibration de basse frequence des proteines". Habilitation a diriger des recherches, Universite de Lyon-I (in french).

Suhre, K., Navaza, J., & Sanejouand, Y.H. (2006): "NORMA: a tool for flexible fitting of high resolution protein structures into low resolution electron microscopy derived density maps", Acta Cryst. D, vol.62(9), p1098-1100 . NORMA can be downloaded here.

Nicolay, S., & Sanejouand, Y.H. (2006): "Functional modes of proteins are among the most robust", Phys. Rev. letters, vol.96, 078104 ; arXiv:q-bio/0509020v1 (q-bio.BM), where modes obtained with standard Elastic Network Models are compared to those obtained with a N-neighbor one, the most robust ones being found to be likely involved in function.

Sanejouand, Y.H. (2005): "Functional information from slow mode shapes", in Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems, C&H/CRC Mathematical & Computational Biology Series, vol. 9, p91-109. Ivet Bahar & Qiang Cui eds, CRC press (A book with contributions from L. Mouawad & D. Perahia, I. Bahar, Q. Cui, C.L. Brooks & F. Tama, J.P. Ma, G.N. Phillips, H. Van Vlijmen, J. Bowman, etc, and a foreword from M. Karplus).

Suhre, K., & Sanejouand, Y.H. (2004): " ElNemo: a normal mode server for protein movement analysis and the generation of templates for molecular replacement", Nucl. Ac. Res. vol.32 (Web server issue), pW610-W614 .

Suhre, K., & Sanejouand, Y.H. (2004): "On the potential of normal mode analysis for solving difficult molecular replacement problems", Acta Cryst. D vol.60, p796-799 .

Sanejouand, Y.H. (2004): "Protein functional dynamics: computational approaches", in Energy localisation and transfer in crystals, biomolecules and josephson arrays, Advanced Series in Nonlinear Dynamics, vol.22, p273-300. Thierry Dauxois, Anna Litvak-Hinenzon, Robert MacKay & Anna Spanoudaki eds, World Scientific.

Valadie, H., Lacapere, J.J., Sanejouand, Y.H., & Etchebest, C. (2003): "Dynamical properties of the MscL of Escherichia coli: A normal mode analysis", J. Mol. Biol. vol.332, p657-674.

Elezgaray, J., Marcou, G., & Sanejouand, Y.H. (2002): "Exploring the natural conformational changes of the C-terminal domain of calmodulin", Phys. Rev. E vol. 66, p31908-31915.

Delarue, M., & Sanejouand, Y.H. (2002): "Simplified normal modes analysis of conformational transitions in DNA-dependant polymerases: the Elastic Network Model", J. Mol. Biol. vol.320, p1011-1024, where previous results are confirmed while the importance of protein shape is underlined.

Tama, F., & Sanejouand, Y.H. (2001) : "Conformational change of proteins arising from normal modes calculations", Protein Engineering vol.14, p1-6, where the link between protein large-amplitude conformational changes and their low-frequency modes is confirmed, even when the latter are obtained with an Elastic Network Model. Moreover, the limits of this relationship are exhibited. PDBMAT, the corresponding stand-alone software, is available here.

Elezgaray, J., Marcou, G., & Sanejouand, Y.H. (2001): "Coupling overall rotations with modal dynamics", Theor. Chem. Acc. vol.106, p62-68.

Elezgaray, J., & Sanejouand, Y.H. (2000): "Modal dynamics of proteins in water", J. Comput. Chem. vol.21, p1274-1282.

Tama, F., Gadea, F.X., Marques, O., & Sanejouand, Y.H. (2000) : "Building-block approach for determining low-frequency normal modes of macromolecules", Proteins: Structure, Function and Genetics vol.41(1), p1-7, where the RTB approximation is used for calculating the low-frequency normal modes of large proteins. DIAGRTB, the corresponding stand-alone software, is available here.

Elezgaray, J., & Sanejouand, Y.H. (1998): "Modeling large-scale dynamics of proteins", Biopolymers vol.46, p493-501.

Sanejouand, Y.H. (1997) "Rôle du changement de conformation du CD4 lors de la fusion VIH/cellule", C.R. Acad. Sci., Sciences de la vie, vol.320, p163-170 (editor: Luc Montagnier). A check of previous results, starting from other cristallographic data, and a proposal for the underlying mechanism (in french, but with an extended english summary).

Sanejouand, Y.H. (1996): " Normal-mode analysis suggests important flexibility between the two N-terminal domains of CD4 and supports the hypothesis of a conformational change in CD4 upon HIV binding", Protein Engineering, vol.9, p671-676. (Scanned: 6 Mo)

Marques, O., & Sanejouand, Y.H. (1995) : "Hinge-bending motion in citrate synthase arising from Normal Mode calculations", Proteins: Structure, Function and Genetics, vol.23, p557-560 (Scanned: 6 Mo).

Sanejouand, Y.H., & Tapia, O. (1995): "Low-frequency domain motions in the Carboxy Terminal Fragment of the L7/L12 Ribosomal Protein studied with MD techniques : Are these movements model independant ?", J. Phys. Chem., vol.99, p5698-5704. (Scanned: 9 Mo)

Durand, P., Trinquier, G., & Sanejouand, Y.H. (1994) : "A new approach for determining low-frequency normal modes in macromolecules", Biopolymers, vol.34, p759-771, where the RTB approximation is introduced (Scanned: 7 Mo).

Sanejouand, Y.H. (1990): "Etude theorique des mouvements internes de grande amplitude de la decaalanine et du fragment C-terminal de la proteine ribosomale L7/L12", Ph.D. thesis, Universite Paris Sud (Scanned: 97 Mo; in french).

Back to top.

Nonlinear modes of proteins:

Piazza, F., & Sanejouand, Y.H. (2011): "Breather-mediated energy transfer in proteins", DCDS-S vol.4 (5), p1247-1266, where more details about the series of previous works are given.

Piazza, F., & Sanejouand, Y.H. (2009): "Energy transfer in nonlinear network models of proteins", EPL vol.88, 68001 ; arXiv:0905.1570 (cond-mat.soft), where some energy transfers in nonlinear network models of proteins are analyzed in depth.

Piazza, F., & Sanejouand, Y.H. (2009): "Long-range energy transfer in proteins", Phys. Biol. vol.6, 046014 ; arXiv:0908.2378 (q-bio.BM), where it is shown that after a localized kick energy transfer can indeed occur, both efficiently and over large distances.

Piazza, F., & Sanejouand, Y.H. (2008): "Discrete breathers in protein structures", Phys. Biol. vol.5, 026001 ; arXiv:0802.3593v2 (q-bio.BM), where the previous results are analyzed in depth, and compared to analytical solutions which suggest that energy can jump from a site to another. See also the comments of Peter Csermely in Nature (Journal Club) vol.454, p.5 (2008).

Juanico, B., Sanejouand, Y.H., Piazza, F., & De Los Rios, P. (2007): "Discrete breathers in nonlinear network models of proteins", Phys. Rev. letters, vol.99, 238104 ; arXiv:0706.1017v3 (q-bio.BM), where it is shown that high amounts of energy may pop up in (or near) enzyme active sites, as a consequence of large and long-lived thermal fluctuations of nonlinear origin. See also the comments of Phil Schewe in Physics news update, issue 846(2), November 12 (2007) and Mark Buchanan in New Scientist, issue 2637, January 5, p.8 (2008).

Piazza, F., De Los Rios, P., & Sanejouand, Y.H. (2005): "Slow energy relaxation of macromolecules and nanoclusters in solution", Phys. Rev. letters, vol.94, 145502 ; arXiv:cond-mat/0503436v2 (cond-mat.stat-mech).

Back to top.

Sequence-structure relationship:

Mahajan, S., de Brevern, A.G., Sanejouand, Y.H., Srinivasan, N., & Offmann, B. (2015): "Use of a structural alphabet to find compatible folds for amino acid sequences", Protein Science, vol.24, p145-153 (DOI 10.1002/pro.2581).

Sanejouand, Y.H., & Trinquier, G. (2003): "Proteinlike properties of simple models" , In Mathematical Methods for Protein Structure Analysis and Design, p147-153, C. Guerra & S. Istrail eds, Springer (Scanned: 2 Mo).

Sanejouand, Y.H., & Trinquier, G. (2000): "L'apport des modeles sur reseau cubique a l'etude des proprietes des proteines ", Bull. Soc. Fr. Phys. vol.125, p25-27 (Scanned: 3 Mo; in french).

Trinquier, G., & Sanejouand, Y.H. (1999): "New proteinlike properties of cubic lattice models.", Phys. Rev. E. vol.59(1), p942-946 .

Trinquier, G., & Sanejouand, Y.H. (1998) "Which effective property is best preserved by the genetic code ?", Protein Engineering, vol.11, p153-169 .

Back to top.

Applications of standard methods:

Teze, D., Daligault, F., Ferriere, V., Sanejouand, Y.H. & Tellier, C. (2015): "Semi-rational approach for converting a GH36 alpha-glycosidase into an alpha-transglycosidase" Glycobiology, vol.25 (4), p420-427. Mutating highly conserved residues nearby the -1 site also proved efficient in the case of this family, which does not belong to the same clan (GH-D) as the GH1 (GH-A).

Teze, D., Hendrickx, J., Czjzek, M., Ropartz, D., Sanejouand, Y.H., Tran, V. Tellier, C. & Dion, M. (2014): "Semi-rational approach for converting a GH1 beta-glycosidase into a beta-transglycosidase", Protein Engineering, vol.27 (1), p13-19, DOI 10.1093/protein/gzt057. Structures of two GH1 mutants with improved transglycosylation yields were obtained (PDB 3ZJK and 4BCE). No significant difference with the wild type (PDB 1UG6) could be noticed. On the other hand, other mutants with high transglycosylation yields were found, by mutating highly conserved residues nearby the -1 site.

Teze, D., Hendrickx, J., Dion, M., Tellier, C., Woods, V.L., Tran, V. & Sanejouand, Y.H. (2013): "Conserved water molecules in family 1 glycosidases: a DXMS and molecular dynamics study", Biochemistry, vol.52 (34), p5900-5910, DOI 10.1021/bi400260b. Experimental and simulation data in favor of the existence of several narrow (or intermittent) water channels in GH1 are examined. Here, the two simulations analyzed are 50 ns long.

Chaput, L., Sanejouand, Y.H., Balloumi, A., Tran, V., & Graber, M. (2012): " Contribution of both catalytic constant and Michaelis constant to CALB enantioselectivity; use of FEP calculations for prediction studies ", J. Mol. Catal. B vol.76, p29-36 (PDF).

Tabrett, C., Harrison, C.F., Schmidt, B., Bellingham, S.A., Hardy, T., Sanejouand, Y.H., Hill, A.F., & Hogg, P.J. (2010): "Changing the solvent accessibility of the prion protein disulfide bond markedly influences its trafficking and effect on cell function", Biochem. J., vol.428(2), p169-182.

Maekawa, A., Schmidt, B., Fasekas de St. Groth, B., Sanejouand, Y.H., & Hogg, P.J. (2006): "Evidence for a domain-swapped CD4 dimer as the co-receptor for binding to class II major histocompatibility complex", J. Immunol., vol.176, p6873-6878.

Sanejouand, Y.H. (2004): "Domain-swapping of CD4 upon dimerization", Proteins: Structure, Function and Bioinformatics vol.57(1), p205-212. PDB files of the proposed contact dimer and of the predicted domain-swapped form, where domain-swapping implies disulfide exchange, yielding disulfide-bonded dimers.

Gomes, E., Sagot, E., Gaillard, C., Laquitaine, L., Poinsot, B., Sanejouand, Y.H., Delrot, S., & Coutos-Thevenot, P. (2003): " Nonspecific Lipid-Transfer Protein Genes Expression in Grape (Vitis sp.) cells in Response to Fungal Elicitor Treatments.", M.P.M.I., vol.16, p456-464.

Willson, M., Sanejouand, Y.H., Perie, J., Hannaert, V., & Opperdoes, F. (2002): "Sequencing, Modelling, and Selective Inhibition of Trypanosoma brucei hexokinase.", Chemistry & Biology vol.9, p1-20.

Allouche, D., Parello, J., & Sanejouand, Y.H. (1999): "Ca/Mg exchange in parvalbumin and other EF-hand proteins. A theoretical study.", J. Mol. Biol. vol.285(2), p855-873.

Willson, M., Alric, I., Perie, J., & Sanejouand, Y.H. (1997): "Yeast hexokinase inhibitors designed from the 3-D enzyme structure rebuilding", J. Enzyme Inhibition vol.12, p101-127.

Fabiano, A.S., Allouche, D., Sanejouand, Y.H., Paillous, N. (1997): "Synthesis of a new cationic Pyropheophorbide derivative and studies of its aggregation process in aqueous solution", Photochemistry and Photobiology vol.66, p336-345.

Durup, J., Alary, F., & Sanejouand, Y.H. (1994): "Molecular dynamics simulation of an antigen-antibody complex: hydration structure and dissociation dynamics" in Statistical mechanics, protein structure and protein-substrate interactions, S. Doniach ed., Plenum Press, NY, p339.

Alary, F., Durup, J., & Sanejouand, Y.H. (1993): "Molecular dynamics study of the hydration structure of an antigen-antibody complex", J. Phys. Chem., vol.97, p13864-13876 (Scanned: 26 Mo). Two simulations, less than 100 ps each, were analyzed.

Back to top.

Force field parametrization:

Periole, X., Allouche, D., Ramirez-Solis, A., Ortega-Blake, I, Daudey, J.-P., & Sanejouand, Y.H (1998): "New effective potentials extraction method for the interaction between cations and water.", J. Phys. Chem. B. vol.102, p8579-8587.

Periole, X., Allouche, D., Daudey, J.-P., & Sanejouand, Y.H. (1997) "Simple two-body cation-water interaction potentials derived from ab-initio calculations. Comparison to results obtained with an empirical approach", J. Phys. Chem. B, vol.101, p5018-5025.

Back to top.

Other field:

Sanejouand, Y.H. (2014): "A simple Hubble-like law in lieu of dark energy" arXiv:1401.2919 (astro-ph.CO). Here, starting from a simple formula for the age-redshift relationship, it is shown that generalizing the Etherington cosmic distance duality relation provides a new way to get rid of the so-called "dark energy".

Sanejouand, Y.H. (2009): "About some possible empirical evidences in favor of a cosmological time variation of the speed of light", EPL vol.88, 59002 ; arXiv:0908.0249 (physics.gen-ph). See also the comment in Optics and Photonics Focus vol.8, s.4 (2010), by Giovanni Volpe. With respect to the previous paper, a discussion of the Pioneer anomaly has been added.

Sanejouand, Y.H. (2005): "A simple varying-speed-of-light hypothesis is enough for explaining high-redshift supernovae data" arXiv:astro-ph/050958 (astro-ph).

Back to top.

(Reload several times to see the Erdre, nearby the University, in Nantes, the Rhone, in Lyon, the Garonne, in Toulouse, a flower, in the Anjou countryside, or a view from the Boboli garden, in Firenze)