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SYNOPSIS

A new method for calculating a set of low-frequency normal modes in macromolecules is
proposed and applied to the case of proteins. In a first step, the protein chain is partitioned
into blocks of one or more residues and the low-frequency modes are evaluated at a low-
resolution level by combining the local translations and rotations of each block. In a second
step, these low-resolution modes are perturbed by high-frequency modes explicitly calculated
in each block, thus leading to the exact low-frequency modes. The procedure is tested for
three cases—decaalanine, icosaleucin, and crambin—using a perturbation-iteration scheme
in the second step. Convergence properties and numerical accuracy are assessed and tested
for various partitions. The low-resolution modes obtained in the first step are always found
to be good starting approximations. Potential advantages of the method include a central
processing unit time roughly N? dependent on the size of the problem (N being the number
of degrees of freedom), the possibility of using parallel processing, the nonrequirement for
loading the complete mass-weighted second-derivative input matrix into central memory,
and the possibility of introducing in the procedure further structural hierarchy, such as
secondary structures or motifs. In addition, any improvement or refinement of the algorithm
benefits from the efficient formalism of the effective Hamiltonian theory. © 1994 John Wiley
& Sons, [nc.
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INTRODUCTION

In many proteins, the binding of some specific li-
gands induces large conformational changes. In some
cases—hexokinase,” citrate synthase,® haemo-
globin,*>® lysozyme, etc.—both nonliganded and li-
ganded structures have been determined through x-
ray crystallography, allowing detailed analysis of the
conformational changes occurring upon ligand
binding. In the two-domain protein citrate synthase,
substrate binding induces a 18° rotation of the small
domain, closing the cleft between the two domains
in which the substrate binding site lies. and provid-
ing a solvent-shielded environment for the catalysis
to occur.>?

In most cases, numerous atoms are involved in
these large conformational changes. Such collective
motions are difficult to study experimentally at the
atomic level since information on motions of distant
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parts of the protein are simultaneously needed. As
a matter of fact, little experimental data exists on
the dynamics of “hinge-bending” motions. A number
of theoretical analyses, however, have been made.!*!!
One of the best suited theoretical methods for
studying collective motions in proteins is the normal
mode analysis, which leads to the expression of the
dynamics straightway from the superposition of
collective variables, namely the normal mode co-
ordinates.”** Such a method has been successfully
applied to the study of the lysozyme hinge-bending
motion, where the lowest frequency normal mode
(at around 3 cm™) was shown to have dominant
contribution.'*'" That low-frequency modes of mo-
tion (under 30-120 cm™!, according to different cri-
teria) are responsible for most of the amplitude of
atomic displacements in proteins happens to be a
general result.!*!8:19

Several methods making use of low-frequency
normal modes have been developed for studving
pathways in conformational changes or finding sad-
dle points.*®*! In the Cerjan-Miller approach.* for
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instance, starting from a local minimum, energy is
maximized with respect to displacements along a
given normal coordinate (chosen to be the most rel-
evant throughout the process) while it is simulta-
neously minimized for the other normal coordinates,
the process being repeated until a saddle point is
reached. Applying such methods to the study of large
conformational changes like the one recently ana-
lyzed in citrate synthase® would certainly lead to
decisive insights in the understanding of mecha-
nisms and kinetics of such motions.

At a more general level, normal coordinates have
also proven to be powerful tools in the analysis of
molecular dyramics trajectories through the quasi-
harmonic approximation,??® or to sample the con-
;  figurational space” when combined with the Monte

“_ Carlo method,? or as an aid to B-factor refinement
" in protein crystallography.” In other words, normal
coordinates form 'a well-suited coordinate reference
system for studymg properties of the potential en-
ergy surfaces of macromolecu]es in general and nf
proteins in partlc‘ular miiii

To date, the largest protem studied with normal
modes analysis is myoglobin,**** made of about 150
residues only, while most interesting proteins are
much larger. Typically, hexokinase has around 450
residues, tetrameric hemoglobin 600, dimeric citrate
synthase 900, and a complete immunoglobulin an-
tibody 1400. By assuming an average number of 30
degrees of freedom per residue—with making use of
extended atoms, as often done—one finds that the
total numbers N of degrees of freedom for the above-
mentioned systems are around 13,500, 18,000,
27,000, and 42,000, respectively. The reason why
applications have been restricted so far to small
proteins is as follows: the normal mode analysis
method requires the diagonalization of 3N, order
matrices (N, being the number of atoms) and most
quick diagonalization methods for getting all the ei-
genvalues require the whole matrix to be loaded into
the computer memory. Expressing the input matrix
in Cartesian coordinates with double precision, this
makes about 750 Mbytes of memory for hexokinase.
Such a computer memory amount is larger than
what is currently available to most computer-using
scientists.

When matrix sparsity is taken into account, or
when hard variables (bond lengths and valence an-
gles) are omitted, less computer memory is re-
quired.**** The possibilities to optimize such com-
puter codes, however, are lower, so that the CPU
(central processing unit) time, roughly proportional
to N®, now becomes the limiting step. Note that for
symmetrical protein multimers, group theory can be

put to profit in the diagonalization of such large ma-
trices.®® Protein multimers built from monomers
with less than 1500 atoms are rare, however. On the
other hand, more dedicated diagonalization meth-
ods, such as those used in quantum chemistry, usu-
ally require good starting approximations of the ei-
genvectors. In this spirit, an adapted version of the
Lanczos algorithm has been applied to the hinge-
bending motion in lyzozyme.'® This system is par-
ticularly well suited to this method since a trial ei-
genvector can be inferred with great accuraey, the
hinge-bending motion involving a small rotation
of the two domains with respect to each -other
(about 3°).

. Recently, efforts have been made to find methods
requiring less computer memory or CPU time than

- the general ones, while making less assumptions on

the eigenvectors than the dedicated ones. Two
promising methods have been proposed, which share

" the following common ideas. First, they take profit
" from the idea that the structure of biological mac-

romolecules can be considered as roughly linear. In
proteins, the strongest interactions occur between
neighbor components (ie., amino acids or sets of
amino acids), while interactions between distant

_components are relatively weak, indeed. Thus, when

combined, low-frequency modes of single compo-
nents are good—but not good enough—approxima-
tions of low-frequency normal modes of proteins.**’
The two methods, however, differ in the way the
first-step approximations are refined. In the first
one, when computing the low-frequency modes of
single components, the interactions between nearest
neighbors are taken into account.®® The matrix to
be diagonalized is then expressed in the subspace of
the low-frequency modes obtained in the first-step
approximation, and the corresponding reduced ei-
genvalue problem is solved. Such a method, which
is consistent with the Rayleigh-Ritz formulation of
vibration problems treatment,® is supposed to only
lead to upper bounds of the exact eigenvalues, but
it happens to give very accurate results when applied
to small test cases such as polypeptides. However,
applications to large proteins have not yet been re-
ported. In the second method, the matrix to be
diagonalized is first expressed in a subset of local
low-frequency modes and the corresponding reduced
eigenvalue problem is solved.*” Then, in order to
reach the exact eigenvectors, an iterative approach
is used. Each iteration is made of several steps, a
subset of the eigenvector Cartesian coordinates
being changed at each step, while the eigenvectors
corresponding to the lowest eigenvalues found pre-
viously are retained. When applied to small protein
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cases, this method converged within a few iterations,
without significant errors in the chosen low-fre-
quency range. However, since diagonalizations of a
rather large matrix are required at each iteration,
this method is expected to be time-consuming.

In the present paper, a third method is proposed,
which leads to exact results and is expected to be
less CPU time-consuming than the two previous
ones. It is a synthesis of both that is based on a
perturbative approach currently used in quantum
chemistry. Here, the first-step approximation for the
low-frequency modes is not built through some fre-
quency cutoff criterion, but by making use of a sim-
ple physical idea. A protein chain can be seen as
being made of rigid components linked together.
These components may be the amino acids or sets
of amino acids such as those defining secondary
structures or motifs. The combination of the trans-
lation and rotation ‘motions of thm rxgld compo-
nents can be expected to provide a reasonable ap-
proximate ~description” of the lowest frequency
modes. This philosophy is pictured in Figure 1.
Studies on DNA have shown® that an approxima-
tion of this kind is very accurate for normal modes
whose frequencies are lower than 380 cm™. In this
work, the accuracy of such an approximation is
tested on model proteins. The efficiency of the
method will be particularly assessed with respect to
the physical choice of the blocks of atoms remaining
roughly rigid in the low-frequency modes.

METHOD

The normal modes of a system are determined by
solving the following secular equations:

é’ﬂ

o

1

Figure 1. Principle of the low-resolution step. The
macromolecule strand is divided into various blocks, whose
local translations and rotations (arrows) provide the basis
of a subspace in which the energy second-derivative matrix
is expressed and diagonalized.

knxl + klgxz + .- km."y = mgmlxl

kanx + Roxs + - - - Ravin = @’max,

knix1 + knoXs + ¢+« kynvan = o’myzy (1)

where the x; are the Cartesian displacements of the
atoms with respect to their equilibrium positions,
k; = (8*V)/(8x;x;) are the second derivatives of
the potential energy with respect to x;, m; are the
atomic masses, w is an eigen angular frequency, and
N is the number of degrees of freedom of the sys-
tem.* Equations (1) can also be written in matrix
notation: CRagL

Kx = wz.Mx_ (2)
where
NN Y kv
K = hzl k.zz i kZN ;-.
..kNl . sz - kNN
—mll 0 - 0} X3
72 A I

L 0 0 E My IN

Multiplying both sides of Eq. (2) by M~/ leads
to the transformed eigenvalue equation:

Hq = v’q (3)

where H is the Hessian matrix and g the mass-
weighted Cartesian coordinate vector:

H=M DKM/, g=M"x

In the following, it will be convenient to use the
more general Dirac notation,*' which allows us to
write the eigenvalue problem (3) in the form

H|g> = o*|g> (4)

where |g> is an eigenvector of the Hessian operator
H. To understand the relationship between nota-
tions (3) and (4), one can say that Eq. (3) is the
matrix representation of Eq. (4) in the basis of the
|i> vectors arising from the mass-weighted Carte-
sian displacements of the atoms. With such a no-
tation, the components of the Hessian matrix H in
the basis of |i> are denoted:
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. ] 1
Hy = (ilHlj) = Tir ki
Similarly, the components of |g> in this basis are
(ilg) = Vmx;
In partlcula.r, the cIoaure relation
L % .
2l<il =1

i=1

expresses the cumpleteness of the mass- we:ghted
Cartesian basis set, while the relation '

. E IQI><ql { = 1

b 1-1
expresses the i;o'mpleteness of the basis set of the
eigenvectors associated with the normal modes. In
this work, however, we will not be interested by the
determination of all normal modes of a macromol-
ecule, but only by a few of them (the n lowest ones).
This will be done through the prior determination
of 6ng (see below) approximate low-frequency ei-
genvectors denoted |gF >, and N — 6ng approximate
high-frequency eigenvectors denoted |g¥ >, in such
a way that these approximate eigenvectors also form
a complete basis set:

6ng
> laf><qf| + Z lgf><qf| =1
i=1 i=6ng+1

The representation of vectors and operators in such
a basis happens to be intermediate between the ini-
tial Cartesian representation and the normal mode
representation in which H is diagonal. Such a low-
resolution description of the harmonic dynamics will
be first presented. Next, we shall describe the
derivation of exact solutions.

Low-Resolution Step

The macromolecule is first divided into ng blocks.
A block can be made of one or a few residues. The
basic idea here is to assume that a good approxi-
mation of the n lowest frequency eigenvectors, those
we are interested in, can be obtained by linear com-
bination of vectors associated with the local dis-
placements of the various blocks, namely their
translations and rotations (see Figure 1). The ap-
proximate low-frequency eigenvectors | g¥ > are thus

obtained by diagonalizing a matrix of order 6ng rep-
resenting H in the basis of the vectors arising from
the six displacements of each of the ng blocks (such
modes are therefore delocalized over the entire mol-
ecule).

In a second step, the high-frequency eigenvectors
|g¥ > localized in each block are determined in the
following way. Let P; be the orthogonal projector
associated with block I. It can be decomposed into
a projector P} associated with the translations and
rotations of the block, and a projector P¥ that is its
orthogonal complement. The projectors associated
with the corresponding subspaces are defined ag~ =

“.'P;"="Pf +P¥ ‘with 3 P;=

. I-I "

where 1 is the NXN 1dent1ty operator. The diag-
onall.zatlon of the pro]ected Hessum b

LTI

Hf:PIHP.I

provides Ny — 6 approximate high-frequency eigen-
vectors.

The set {|g{ >} of all eigenvectors computed for
each block spans a subspace that is the orthogonal
complement of the subspace spanned by the ap-
proximate low-frequency eigenvectors. The exact
eigenvectors will be obtained by perturbating these
approximate eigenvectors by the high-frequency
ones. For proteins, the perturbative derivation of
the n lowest frequency exact modes is not obvious
at all since one has to deal with a highly degenerated
low-frequency spectrum, and one cannot be assured
of a one-to-one correspondence between the n lowest
frequency |gF¥ > and the n lowest frequency exact
solutions. Instead of considering a one-to-one cor-
respondence between the unperturbed eigenmodes
and the exact ones as done in standard perturbation
theory, the subspace of exact solutions (target space)
will be here derived from the subspace of the un-
perturbed eigensolutions (model space) within the
theory of effective Hamiltonians, *? which is briefly
recalled below.

Effective Hessian

The theory of effective Hamiltonians is centered on
the derivation of a n-dimensional effective Hamil-
tonian that provides n exact eigenenergies and ei-
genvectors that are the projections in the model
space of the n lowest exact solutions.*? In our clas-
sical vibrational problem, one may determine a n-
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dimensional effective Hessian, the eigenvalues of
which will be the n lowest exact eigenvalues w? of
the macromolecule. The associated unperturbed
projector is

Py = 3 |gf><gF|

i=1

while the pro]ector asaocmted Wlth the complemen—
tary space is 2

Ql:l_ Z |Q; ><QLI + E IQ. ><Q. I

l-n+1 sk g T l—Gng-H

Herea.fl:er, 'the Hessian operator H will be split into
two parts. an u.nperturbed part Hy and a perturba-
tmon V The meerturbed part is defined as

6ng, . N
Ho= Z(wFPlgF><qf |+ 2 (0f)?|qff><qf|
i=1 imBrg+l

where (0f)* = (qF|HIqF) and (0f)?

= (qf|H|q¥). With the above definition, the
matrix representation of H, in the basis set {|gF >,
|g¥>} is diagonal. The effective Hessian can
thus be written as

where X = QX P, is the reduced wave operator that
couples the model space to the complementary space.
The diagonalization of H*T provides the n lowest

w2:

n

H* = 3 of|q} ><q"| (5)

i=1

where |q? > = P,|g;> is the projection in the model
space of the exact eigenvectors |g;> and |g"%> is
the corresponding biorthogonal vector characterized
by {(q*°lq}) = &;. In this context, the problem of
finding the n 1oweat frequency eigenmodes reduces
to the determination of X, which obeys a Bloch-like
equation of the form

X==ZLV(1+X)P,- (6)

2
i=1 w; Ho

where P; = |q?><g"’| is the nonorthogonal pro-
jector associated with the eigen solutions of H*™?.
From Egq. (6), Eq. (5) can be transformed into the
pertu:batwe express:on.

Q). 1

H = PHP, + 3 PV ﬂ—ﬁ:vu +X)P (7)

=1

As a consequence, the determ.ination of the reduced
wave operator X can be obtained by solving Eq. (6)
using the permrbatxon-lteratlon scheme described
in Ref. 43. s -

myy - st et

Status with Respect to Other Procedures

Our method presents smlant:les and dlﬁ'erences
with respect to the two recent works mentioned
above.?*" In these works, the macromolecule is also
divided into smaller components from which local
modes are extracted. These components are analo-
gous to our blocks but the way the local information
is used is different in the three approaches.

In Mouawad and Perahia’s approach,®” the local —

modes are combined linearly to get approximate low-
frequency modes that are delocalized over the entire
macromolecule. They are next improved iteratively
by mixing with Cartesian coordinates until conver-
gence. The procedure is very stable and converges
rapidly, but the computational effort remains im-
portant since large matrices have to be diagonalized
at each iteration. The method has been applied to
small proteins but the authors did not report any
computational time estimation as a function of N.

In Hao and Harvey’s method,* the determination
of local modes is improved from interactions with
the neighboring blocks. The authors ground their
method on a previous work by Ookuma and
Nagamatus* but it can be formulated within the
theory of effective Hamiltonians as well. Typically,
expressions (16) and (17) in Ref. 36 are nothing
else than effective Hessians, analogous to our
expression (7). However, their effective interactions
and effective Hessians are not used for the same
purpose as ours. They are used to improve local
modes while in our approach the effective Hessian
(7) is associated with approximate low-frequency
modes that are delocalized over the entire macro-
molecule and that are interacting with approximate
high-frequency modes localized in the blocks. More-
over, in that method, several approximations are

o gt R 0o e
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further incorporated such as the neglect of high-
frequency modes or the use of “static conditions,”
which makes their formalism approximate while
ours leads to exact salutions. From a computational
point of view, their use of local effective Hessians
no doubt reduces the dimensionality of the eigen-
value problem. However, the authors neither report
calculations on real proteins (only polypeptides and
a small DNA oligomer were considered ) nor mention
the dependence of the CPU time on the size of the
problem. o '

When dealing with larger systems, these two
above methods seem to be promising since they re-
quire reasonable computer memory, but they still
have to prove-their efficiency regarding the CPU
! time requirement. In our case, we show below how
"~ our method is nearly N? dependent on the size of
the system.. -y : 8 g

M bl RV A TR
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Implementation of our method was first done to
check whether it could work for proteins, especially
regarding the convergence problems. We are cur-
rently optimizing the codes regarding the memory

and CPU time requirements, so that significant

quantitative information about computational per-
formances is therefore not yet available. It is pos-
sible, however, to make some quantitative estima-
tions of the N dependence. The initial low-resolution
description requires the calculation of the elements
of the Hessian matrix of dimension 6ng. This in-
volves a number of multiplications proportional to
N?Z. On the other hand, the computational time for
diagonalizing this matrix is proportional to (6ng)®
= 216n3, while the computational time for getting
the zero-order high-frequency modes in the various
blocks is roughly proportional to ng (N/ng)? = N3 /
n3 (if all blocks are assumed to have the same di-
mension). The total computational time for dia-
gonalizing all these matrices is therefore propor-
tional to 216n3 + N*/n}. The optimal number of
blocks can be obtained by minimizing this expres-
sion with respect to ng. An immediate derivation
yields to ng = 0.3N*/5 with a corresponding CPU
time therefore proportional to 17N%3. This power
9/5 happens to be slightly under the power 2 oc-
curring in the calculation of the elements of the low-
frequency Hessian matrix. Since the final pertur-
bation-iteration step is also proportional to N2, the
overall numerical procedure appears to be rather well
balanced, and should keep a N2 dependence for very
large proteins.

TEST CALCULATIONS

Three systems of increasing size and structural
complexity have been tested: two regular a-helix
oligomers, decaalanine and icosaleucin, and. a real
small protein, crambin. Decaalanine, (Ala),, is
taken with methyl groups at both ends, and icosa-
leucin, (Leu)y, is taken in its zwitterionic form.
Starting from a-helix configurations, these two oli-
gopeptides were optimized with Powell’s algorithm
within the standard CHARMM-19 force field and
using extended atoms for CH, CH,, and CH,.*5 For
decaalanine, all atom—atom interactions were taken
into account. For icosaleucin, a cutoff at 7.5 A was -
used in the calculation of nonbonded interactions,
in conjunction with a switching function between
6.5 and 7.5 A, and a shifting function for the elec-
trostatic interactions.* The third system, crambin,
is a globular protein of 46 amino acids, whose tri-
dimensional structure is lmowhto a high accm'acy‘“
Although one of the smallest natural proteins,

‘crambin exhibits both kinds of secondary structures

(two a-helices and a 3-sheet) and disulfide bridges,
which makes it an ideal target for our methodological
tests. This system was optimized with the same pro-
tocol as icosaleucin. As in a previous study, the op-
timized structure remains close to the X-ray geom-
etry used as starting point.”® In all three cases, the
mass-weighted second-derivative matrix was cal-
culated from two-points finite differences. Using
these protocols, the lacunarities of the matrices for
decaalanine, icosaleucin, and crambin are of 0, 34,
and 81%, respectively.

Let us examine, first, how good our normal modes
are at the end of the low-resolution step. This can
be measured both from the value of the frequencies
and from the quality of the corresponding vectors.
To visualize the components of each vector, one may
plot the module of atom displacements along the
chain. This provides a convenient fingerprint for
each mode and roughly indicates the location of the
main deformations in the molecule. We also tried
to use the modules of the displacements of the cen-
ters of gravity for each residue. This may help reduce
the information for very large proteins, but in the
present cases it did not bring much more help than
the atom-by-atom plotting.

We will begin with a partitioning of the protein
chains into as many blocks as residues. In other
words, in this first standard partitioning, there is
one residue per block. This makes 12 blocks for
(Ala)y, (the two methylated ends being counted
apart), 20 blocks for (Leu)s, and 46 blocks for
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crambin. Next, we have increased the size of the
blocks to 2, 3, and more residues, thus dividing the
total number of blocks by these corresponding fac-
tors.

For the standard one-residue-per-block division,
the low-resolution frequencies and their evolution
at each iteration of the perturbation-iteration pro-
cess are plotted for the ten lowest modes of decaal-
anine in Figare 2 and for the five lowest modes of
icosaleucin and crambin in Figures 3 and 4 respec-
tively. In these curves, the starting values of the
frequencies are sufficiently well located so that con-

vergence to a reasonable accuracy—say four signif-

icant figures on the frequencies—is reached within
a few iterations, namely less than 5 iterations for
(Ala),p and less than 10 iterations for (Leu)s, and
crambin. Note, however, that the higher the fre-
quency mode, the less accurate the starting point.
This could make more difficult the obtention of
higher frequency modes and further improvements
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Figure 2. Decaalanine. Wavenumbers corresponding to
the ten lowest normal modes in the standard (one-residue-
per-block) partitioning as a function of the number of
iterations in the perturbation process. The starting values,
at left, result from the low-resolution step. The exact val-
ues are indicated at right.
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Figure 3. Icosaleucin. Wavenumbers corresponding to

the five lowest normal modes in the standard partitioning.

could then have to be introduced in the procedure,
such as the use of an intermediate space in the per-
turbation-iteration step, the diagonalization of a
subspace larger than 6ng in the low-resolution step,
or the introduction of further degrees of hierarchy.

In Figures 2 and 4, neat avoided crossings can be
noticed early in the iteration process. This means
that although our low-resolution modes are good
approximations for obtaining the exact vectors, the
starting ordering may be different from the final or-
dering. This is particularly striking in Figure 4 where
the second low-resolution vector clearly relates to
the third exact solution. We shall see below that
these vectors are quite similar, indeed.

When the chain of blocks is less resolved, i.e., if
we build our local translations and rotations over
blocks that are bigger and less numerous, the start-
ing vectors are not so good, but still accurate enough
to yield the exact solutions within a few iterations.
This is illustrated in Figure 5 for decaalanine, here
divided into six blocks, four of which including two
residues. See how the starting frequencies, at left,
are higher than in Figure 2.

Let us now have a look at the quality of the low-
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Figure 4. Crambin. Wavenumbers corresponding to the
five lowest normal modes in the standard partitioning.

resolution modes regarding their components over
the modules of the atom displacements. For the
standard partitioning into one residue per block, the
lowest vector resulting from the diagonalization in
the subspace of local translations and rotations is
always a very good approximation for the lowest
mode, as exemplified for decaalanine and crambin
in Figures 6 and 7, respectively. For the next modes,
the quality is slightly reduced but remains quite rea-
sonable, as exemplified for the third lower modes of
decaalanin and crambin in Figures 8 and 9, respec-
tively. In the latter case, it is the second low-reso-
lution mode that generates the third exact mode,
because of the avoided crossing visible in Figure 4.
For the sixth lower mode of decaalanine, the ap-
proximation provided by the low-resolution step is
now less conspicuous (Figure 10, top). The general
shape of the mode, however, remarkably gets into
position at as early as iteration one of the pertur-
bation process (Figure 10, bottom).

As the number of blocks is reduced, one may ex-
pect a degradation of our zero-order low-resolution
modes. Actually, most vectors happen to resist fairly
well to this treatment, the most robust being of
course the lowest one. For decaalanine, this mode

P (cm™)
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S 1 234 56789 0N 2w
iterations ) exact
Figure 5. Decaalanine. Obtention of the wavenumbers

corresponding to the nine lowest normal modes in the
two-residue-per-block partitioning.

is blotted in Figure 11 as it appears at the end of
the low-resolution step, for both a 12-block or a 3-
block partitioning of the helix chain. Both cases ex-

a8t
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&

1 0 20 30 40
atoms

Figure 6. Decaalanine. Composition of the lowest nor-
mal mode expressed by the displacement modules for each
atom along the protein chain. The curve labeled e corre-
sponds to the exact eigenvector. The other curve results
from the low-resolution step in the standard partitioning.
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_atoms

Figure 7. Crambin. Composition of the lowest normal
mode expressed by the disp]acep:ent modules of each atom.
Comparison of the exact solution e with the starting low-
resolution eigenvector in: the standard partitioning.
A Sty R I I 4 y

hibit similar shapes. For the third lower mode of
decaalanine, the same comparison makes clear this
mode is less well approximated with a 3-blocks-only
partitioning (Figure 12). For crambin, when the 46-
residues chain is divided into 10 blocks of five res-
idues each on average, the low-resolution step is still
a good starting point for both the lowest mode and
the third lower mode (Figure 13).

We next tried to individualize a secondary struc-
ture in crambin, thus incorporating into the method
some information about its known three-dimen-
sional structure. For doing so, we have clusterized

the eight residues of the small a-helix ( residues 23—

—_—

\ \
e e
1 0 20 30 40 50 60 66
atoms

Figure 8. Decaalanine. Same as Figure 6, for the third
lowest mode.

“" atoma _. : ;
Figure9. Crambin. Same as Figure 7, for the third low-
est mode.. o g ; S

b

30) into a single block, all other residues still con-
tributing one block each. This does not. perturb too
much the starting low-resolutiog descriptio_n, as

1 10 20 30 40 50 60 66

atoms

Figure 10. Sixth lowest mode of decaalanine in the
standard partitioning. Exact vs low-resolution step eigen-
vector (top), and how it gets into position at the first
iteration of the perturbation process (bottom).
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©atoms

Figure 11. ‘Lowest mode of decaalanine. Comparison
of the low-resolution step for partitions of the chain into
12 blocks and 3 blocks. oS

shown for the two lowest modes in Figure 14. Going
a step further, the large a-helix (residues 6-20) is
further contracted into two blocks of 7 and 8 resi-
dues, leading to a set of 26 blocks only. When com-
pared with the standard partitioning into 46 blocks,
the starting low-resolution modes again appear to
have resisted fairly well to this secondary-structure
contraction, as can be seen in Figure 15.

TOWARD LARGER SYSTEMS

Considering proteins or polypeptides as being made
up of rigid components linked together have yielded

atoms

Figure 12. Decaalanine. Same as Figure 11 for the third
lowest mode.

1 100 : 200 300 386
atoms

Figure 13. Crambin, first (top) and third (bottom)
lowest modes. Comparison of the exact solution with the
low-resolution step for the five-residue-per-block parti-
tioning.

good zero-order approximations for the lowest fre-
quency normal modes, especially regarding the ei-
genvectors. Nevertheless, although usually correctly
ordered at the low-resolution step, the corresponding
frequencies may differ from their exact values by as
much as a factor of two (remember Figure 4). So,
any further improvement of these starting frequen-
cies would be welcome when we shall address much
larger systems. In the present tests, a one-residue-
per-block partitioning was always found to be effi-
cient, but a strategy of block building that would
take into account any information about secondary
or tertiary structures would no doubt improve these
low-resolution frequencies. This is all the more true
that in such cases motions of rigid structural ele-
ments should be more meaningful than in our small
systems herein tested.

In this paper, only small systems have been in-
vestigated but we now intend to address large pro-
teins. In Table I are summarized the data and con-
straints characterizing such systems up to 1500 res-
idues. This size—typically that of a complete
antibody molecule—can be considered as an upper
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halix

48 bl

residues

Figure 14. Crambin, low-resolution modes. Compari-
son of the standard partitioning with one in which the
small helix is clustered into a single block. Top: lowest
mode; bottom: second lowest mode. The eigenvectors are
here expressed in the displacement modules of the center
of mass for each residue.

limit to be handled, but a lot of interesting functional
proteins range between 100 and 1000 residues ( cor-
responding to molecular weights of 10100 kD). The
specifications listed in Table I are obtained from a
partition optimizing the CPU time, as explicated at
the end of the Method section. The number of blocks
and their optimal size smoothly increases with N in
the range of current proteins. Even in extreme cases
(1500 residues), the corresponding elementary
computational steps remains reasonable. The block
size always remains small (< 240) while the dimen-
sion of the 6ng low-resolution Hessian matrix is at
worst of order 1128. Such a matrix can now be di-
agonalized within a few minutes on currently avail-
able workstations. Concerning the disc storage re-
quirement of the input mass-weighted Hessian ma-
trix, for the range 500-1000 residues, one needs 300
1000 Mbytes, which corresponds to disk capacities
currently offered on workstations.

The final perturbation step of our method re-
quires a computational effort proportional to nN?

with n being the number of searched low-frequency
modes. The procedure therefore exhibits a consistent
roughly N*? dependence in each step. Let us recall
that full diagonalization of the complete Hessian
matrix has a CPU time proportional to N*. Thus,
as a function of N, the estimate of computational
time required by our method seems quite reasonable
and should be suitable for investigating large sys-
tems corresponding to very large values of N
(> 10,000). Beyond these capabilities, the proposed
method presents additional advantages. First, the
low-resolution step can be fully parallelized since

~the determination of the high-frequency modes in
- each block can be made independently. Table I in-

dicates that the number of blocks is always lower
than 200, which is, on another hand, the number of
processors becoming now available on most efficient
parallel machines. Qur approach has a last advan-
tage if we want to refine or improve it: it is entirely
formulated within’ the framework of the theory of

helices

48 bl.

1 10 20 30 40 46
residues

Figure 15. Crambin, low-resolution modes. Compari-
son of the standard partitioning (46 blocks) with a 26-
block partitioning corresponding to the contraction of the
small helix into a single block, and that of the large helix
into two blocks. Top: lowest mode; bottom: second lowest
mode. The eigenvectors are expressed in the displacement
modules of the center of mass for each residue.
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TableI Summary of Mean Data for Proteins of Different Sizes®

Minimal Disk Storage

Molecular . Size Number Size of Requirement for the
Number of Weight of the of Blocks Residues Block the 6ng Input Matrix
Residues (kD) Matrix N ns per Block Size Matrix (Mbytes)
10 - -1 300 10 1 30 60 < 1.
50 ‘ 5 . . 1500 25 2 60 150 3
100 10 . 3000 33 3 90 540 11
500 55 15,000 100 5 150 600 270
THI000™ - T gagt © 30,000 167 G et RN 1002 1080 -
1500 165 * 45,000 - 188 8 240 1128 2430

-: * The average parameters for a mean residue are as follows. Degrees of freedom: 30 (extended atoms assumed); molecular weight:
110. The number of blocka is taken in the optimal partition that minimizes the CPU time (see text). The input mass-weighted second-
derivative matrix is assumed to have a lacunarity of 80%.

PP

the effective Hamiltonians, and we can take benefit
of the large experience accumulated over years in
‘this field. In particular, significant progress in the
theory and efficiency in the algorithm could be at-
tained by constructing effective Hessians associated
with various structural hierarchies such as domains,
motifs and secondary structures.*” Work is in pro-
gress along these lines.

We wish to thank Jiri Savrda and Gabin Treboux for their
assistance in the code writing. We also thank Lilianne
Mouawad and David Perahia for fruitful discussions and
for providing us with their manuscript prior to its publi-
cation.
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