Modal Dynamics of Proteins in Water
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ABSTRACT: We studied a dynamical model for the motion of the large scales of
proteins in water. The model was obtained by projecting the (averaged) Newton
equations onto some set of harmonic modes. We compared the statistics of the
so-obtained trajectories with those obtained by standard techniques, and
concluded that our dynamical model is able to fairly reproduce the average
properties of the large-scale motion of the protein, and at the same time allow

time steps one order of magnitude larger than the standard ones.
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Introduction

M olecular dynamics constitutes today an im-
portant tool in the study of protein dy-

namics.!"? Despite the considerable progress made
both in the computer power and the algorithmic ap-
proaches to molecular simulation, the longest time
scales available for usual runs (based on fully atom-
istic descriptions) are limited to a few nanoseconds.
On the other hand, models based on coarse-grained
versions of macromolecules and their interactions
are useful in describing “macroscopic” properties
on sometimes macroscopic time scales. However,
they obviously fail at describing specific properties
of individual molecules.
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In the present work, we describe an alternate way
in which an approximate description of macromole-
cules and their interactions, based on projections
onto some set of normal modes, are used to generate
trajectories that are shown to share many properties
with those of fully atomistic simulations. One of the
few parameters determining the model is the ratio
¢ = N'/3N, between the effective number N’ of sim-
ulated degrees of freedom and those (3N,) of the
full system, the solvent being excluded. We show
that for such low values as ¢ ~ 1072, the trajectories
generated still reflect several properties of the full
(¢ = 1) simulation.

The use of normal modes in the context of pro-
tein dynamics simulations is far from new.! It has
been shown,® for instance, that the hinge-bending
motion characteristic of several proteins can be ana-
lyzed in terms of the lowest frequency modes (up
to 10 cm™!). More generally, it is well known*~?
that protein motion is confined to some subspace
(reduced set of the phase space) of a very small di-
mension, corresponding typically to a few percent
of the total number of degrees of freedom of the
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protein. The basic idea of the present approach is
to take advantage of this fact, to obtain an efficient
algorithm for the simulation of the degrees of free-
dom describing this subspace. The present method
will be shown to be efficient (in terms of speed-up
with respect to more traditional methods) and fairly
accurate in capturing statistical features of protein
dynamics.

The central question to be adressed is the pos-
sibility of deriving evolution equations for the de-
grees of freedom corresponding to soft harmonic
modes. Of course, these equations should involve
only these coordinates. To the best of our knowl-
edge, this question has only been adressed by two
different authors in the context of protein dynam-
ics (see ref. 10 for the application of similar ideas
in the simulation of “small” molecules). In ref. 11,
J. Durup introduced a change of variables to de-
scribe the protein motion in a hierarchycal way.
No modifications of the interactions are involved
in this method. Although this appears to be a
rather promising approach, it has not been tested
either for sufficiently long trajectories or in the pres-
ence of water. The second reference is the so-called
MBO(N)D method.'? In this method, the protein
is partitioned into several groups of atoms. Each
group can be described at different levels of detail,
ranging from strictly rigid to fully flexible bodies.
Alternatively, each group of atoms can be described
in terms of a truncated set of harmonic modes, in
the same spirit of references.!” 13 From this point of
view, MBO(N)D generalizes the approach described
in refs. 10 and 13, as well as that of the present arti-
cle. However, in ref. 12, only vacuum simulations
are reported and, more importantly, no modifica-
tion of the interactions is implied by the projection.
It will become apparent in the following that this
last point is a key issue to take into account the
neglected degrees of freedom involved in the pro-
jection procedure. Let us notice that this idea is
not completely new. It appears, for instance, in the
context of smoothed molecular dynamics!* 1> (de-
scribed below), or in the so-called “blocking tech-
nique” for emulating very large polyelectrolytes,'”
where it is shown that taking into account the elec-
trostatic interactions between groups (“blocks”) of
atoms requires the addition of a corrective nearest-
neighbor interaction, as well as the rescaling of the
bonded interactions.

This article is organized as follows. In Section 2,
we present the theoretical basis of the method. The
next section shows the results obtained in several
simulations of the CTF protein. Concluding remarks
are addressed in the last.
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Basis of the Method of Projections

Molecular dynamics simulations usually assume
the Newton equations

a%X;
dt?
where N, is the number of atoms of the system, X; is
the position of the i-th atom, m; its mass, and Fi(X)
the i-th component of the force exerced on this atom.

The assumption that the motion of some molecule is
well described by a “few” modes can be written as

mi :Pi(Xi)/ Z.:1/-'-/1\]5! (1)

v
X0~ X+ =3 atad. @

\/—' n=1

Notice that this is a somewhat restraining as-
sumption on the motion of the molecule, as no
(solid) rotation of the ensemble is allowed. Tak-
ing into account this fact considerably complexs the
description, and will be considered elsewhere. Ex-
pression (2) becomes an equality if the set of modes
{¢n(i)} forms a basis of the configuration space of
the protein. Thus, the approximation made in (2)
consists in neglecting the projection onto the subset
{@n(i), n > N'}, which will be considered as the “en-
semble of high-frequency modes.” The number N’
of retained modes is a free parameter of the present
model.

A first approach to obtain evolution equations
of the restrained configuration (2) is the standard
Galerkine approximation, which leads to the set of
equations (the projected equations):

1 Y
\/ﬁi mgl Cm(pm(l))/
n=1,...,N. (3)

d?c,

. Fi 0

This is a closed set of equations that can be in-
tegrated in time, yielding a trajectory in which the
molecule shows very reduced fluctuations. This is
a puzzling situation, first pointed out in ref. 16. In
fact, we know that Xi(t) ~ X0 + YN_ | c.(Dgn(i)
is a very good approximation; still, F;(X;(t)) and
Fi(X?—i—Zi\n]/: 1 cn()en(i)) yield very different dynam-
ical properties. A first hint to the solution of this
question is suggested by an estimate of the error
made in eq. (3):

dZ approx
true
ﬁ (Cn —Cn )

3N,
- Z¢n<i>[%1fi (X? D cna)wn(z'))

n=1
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In the last expression, while ¢, m > N’ 4+ 1 can
be thought as being a small quantity [this is equiv-
alent to the assumption that the approximation in
eq. (2) is good], the multiplying factor §F;/§X; can
be extremely large, mainly due to the existence of
stiff (short-range) forces. In others words, as soon
as the projected configuration is slightly out of the
equilibrium values for the bond lengths and valence
angles, the restoring force is tremendous, and the
molecule cannot fluctuate. The conclusion is that the
approximate equations (3) are actually very bad ap-
proximations of the evolution equations (1) because
the rh.s. in eq. (1) is a very rapidly varying force.

A remedy for this problem consists in project-
ing a smoothed (in time) version of the Newton
equations (1). Smoothed evolution equations are
obtained in the limit of infinitely stiff bond and an-
gle energy terms.!*1>18 [f the latter are noted by
€ 2Upona, and

=e? Upona + Usoft (4)

denotes the total potential energy of the system, it
can be shown'> 18 that, in the limit ¢ — 0 (infinitely
stiff system), the dynamics of the molecule is given
by a constrained Hamiltonian system with a force
term of the form

_Vusoft — AV Uconstraint — Frivman-

The term AV Uconstraint is @ Lagrange multiplier con-
straining the dynamics to the manifold Upous = 0.
Practically, this means that the dynamics takes place
only on dihedral space. The Frixq, term arises as a
correcting term (second order in the limiting process
of taking infinitely stiff bonded terms). It can be
shown' to be strictly zero for the bond terms, but
yields nonzero contributions for the angle energy
terms. Several expressions have been given in the
literature for the Friyun term. Probably one of the
first to note the need of including such a correct-
ing term was Fixman, in the context of polymer
dynamics." He argued that such a term is neces-
sary to correct time averages possibly biased by the
constraints imposed on the dynamics. Another line
of reasoning has been followed since (at least) the

work of Takens,'® who gave a more rigorous dis-
cussion of the origin of this term. Interestingly, the
two approaches give different results. Indeed, it can
be shown® that, at least in certain low-dimensional
cases (small molecules), the Fixman’s approach is
not correct.

As stated above, one could expect that project-
ing the smoothed evolution equations, the problem
related to the existence of rapidly varying forces
disappears. This will be shown to be true in the
following. However, in doing so, two different ques-
tions arise. First, is the use of smoothed evolution
equations realistic in the context of molecular dy-
namics? Second, how to effectively compute the
projections of these smoothed equations? The use of
smoothed evolution equations instead of the origi-
nal ones has been suggested by several authors.!# 1°
The idea seems very appealing, as smoother forces
mean larger time steps and, consequently, larger
integration times. The problem is that the computa-
tion of the correcting potentials is, a priori, extremely
expensive. On the other hand, the noninclusion of
this correcting terms has been shown to be not
quite appropriate.’ In the following, we will make
the (strong) hypothesis that the correcting terms
are negligible when projected onto large-scale, soft
modes. In ref. 13, we assumed that the projected
contribution of the Lagrange multiplier (constrain-
ing the dynamics to dihedral space) is small. This
second hypothesis seems rather plausible, as soft
normal modes are expected to be orthogonal to the
directions corresponding to stiff motions. However,
it will be shown below that as the number of slow
retained modes N’ increases, the contribution of the
Lagrange multipliers becomes important, and that it
has to be taken into account in some way. Instead of
explicitly computing the Lagrange multipliers, we
have used the following set of equations:

d? 1 OUso + pe2U,
FCzn _ Z oni) 4 soft al;( bond
; /M i

(o)
m—l

with the parameter 1 chosen so that pe=2 < 1.

In ref. 13, we investigated the consequences of
a similar hypothesis (1 = 0) for the dynamics of
BPTI in vacuum, using the so-called anharmonic
modes. The latter are obtained as the eigenmodes
of the correlation matrix of the atomic positions.
Thus, their computation assumes the existence of
some computed trajectory, long enough to ensure
the convergence of the averaging procedure. As
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noted in ref. 21, this can be quite a slow process,
and doubts can be cast as to the relevance of the
so computed modes to describe the phase space of
the protein. The situation is different when using
harmonic modes, as only a configuration of mini-
mal energy is needed for their computation. Still,
it could be said a priori that soft modes do not
contain all the information needed to describe the
phase space. The results of ref. 9 (and references
therein), concerning the description of transition be-
tween closed and open forms of several proteins, as
well as the success of the phase-space exploring al-
gorithm of ref. 22 tend, however, to provide some
support to this hypothesis.

The last point to be taken into account to per-
form the simulation of the projected protein is how
to treat the solvent molecules. Several points need
some discussion. First, is it the sole protein that has
to be projected, or could one project more generally
a partially solvated protein? Based on the results
of ref. 23, it seems that some water molecules stay
glued to the outer part of the protein, and could
participate in the large-scale motion of interest here.
Second, if large time steps are being looked for, how
can one ensure the stability of the computed trajec-
tory as far as the solvent molecules are concerned?
In this work, we will be using the approach of
ref. 24, in which the authors artificially increased by
a factor of 10 the hydrogen mass of the water mole-
cules. The resulting solvent is, as expected, slightly
more viscous, but displays significantly the same
structural correlation functions as ordinary water.

To summarize, the following basic steps have
been taken in each of the (projected) simulations:

1. Generate a starting configuration by minimiz-
ing the set protein plus water (periodic bound-
ary conditions for the solvent have been used
throughout).

2. Extract a subset of atoms containing the pro-
tein plus the water molecules distant by less
than 4 A. Minimize this subset. The resulting
configuration is actually very close to that ob-
tained in the previous step. However, the next
step requires a rather accurate approximation
of the minimum; thus, step 2 is necessary.

3. Compute the harmonic modes (of the set pro-
teine + close water) with frequencies up to
some cutoff (typically 80 ecm™!), and orthogo-
nalize the protein components of these modes.

4. Generate a new initial configuration by adding
water to the minimum obtained in step 2.

MODAL DYNAMICS OF PROTEINS IN WATER

5. Integrate in time the projected eq. (5) for the
protein and the usual ones for the solvent with
the hydrogen mass increased by a factor of 10.

In all the following simulations, the time step we
have been using is 10 fs, and the SHAKE algorithm®
for the heavy water molecules. In simulations with
projected proteins in vacuum, 20 fs time steps or
even higher gave satisfactory results. This was not
the case for the present system. It should also be
mentioned that, in the heating stage of the dynam-
ics, a time step of 10 fs leads to unstable trajectories.
We have used a simple time adaptive algorithm to
cope with this problem. All the simulations were
done with the CHARMM (c24g2) program,?® using
a 13 A cutoff for the electrostatic forces, and an all-
hydrogen force field (version 22). The CTF has been
surrounded by TIP3 water molecules in a cubic box
of length 40 A. The nonprojected (reference) trajec-
tories are of a length of 200 ps.

Results

We will consider in the following the particular
case of the carboxy terminal fragment (CTF) of the
L7/L12 ribosomal protein of E. coli.?”-?® 1t has pre-
viously been shown by several authors® 3 that the
CTF dimer shows a collective motion between the
oligomers that reflects a low-frequency motion (of a
period of around 5 ps) that is performed by two of
its (sub)domains: this motion appears as a fluctua-
tion of relatively large amplitude of the e domain
with respect to the -sheet domain. Moreover, this
motion seems to be quite insensitive to the particu-
lar details of the simulation, such as the existence of
effective solvent, choice of the force field, etc. Our
purpose here is to show that the projections onto
normal modes and the approximations involved in
eq. (5) preserve this large-amplitude motion.

Let us first look at the rms (root mean square)
fluctuations of the position of the C* atoms. In Fig-
ure 1, we represent the measurements made on
(a) the standard trajectory (no projection, time step
1 fs); (b) a projected dynamics trajectory (dotted
line) with 150 harmonic modes (time step 10 fs) and
pe=? = 0.01; and (c) the previous standard tra-
jectory projected itself onto the same 150 vectors
(dashed line). Although the rms of the projected
dynamics trajectory (b) is slightly lower than that
of the original trajectory (a), the overall agreement
is satisfactory, particularly when compared to the
rms of the projection of the original trajectory. By
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FIGURE 1. The rms of the position of the C* atoms as
a function of the residue number for the standard
trajectory (continuous line) and for the trajectory
projected into 150 normal modes and © = 0.01 (dotted
line). The dashed line corresponds to the projection onto
the same 150 modes of the standard trajectory.

comparison with the results obtained in ref. 13, the
projection onto the modes of the quasiharmonic
analysis seem to perform better than the harmonic
modes. That should be expected, as the former are,
by construction, optimal in the description of the
position fluctuations in the rms sense. Note, how-
ever, that in our previous work the temperature in
the projected subspace was a free parameter of the
model. The particular value N’ = 150 chosen here
comes from a compromise between accuracy of the
projected dynamics and the possibility of using a
10 fs time step. It turns out that twice the number of
harmonic modes leads to a trajectory where very of-
ten the change in total energy is larger than 20 kcal,
thus requiring shorter time steps. The e 2Epond
term is of crucial importance in this context. We
have initially integrated the model equation (5) with
n = 0 and N’ = 50, obtaining satisfactory results
for the rms of the C* carbons (not shown in Fig. 1).
However, when increasing from N’ = 50 to N’ =
100, while keeping . = 0, the protein very rapidly
loses its main structural properties, as can be seen in
the ribbon representation of Figure 2.

Let us now turn to the consideration of the large
amplitude motion observed in refs. 29 and 30, be-
tween the aa and the f-sheet domains. More pre-
cisely, following the method proposed in ref. 29,
we measure the angle between the «-B and «-C he-
lices, defined, respectively, by residues 80-88 and
100-113, using the program helix of CHARMM.
The resulting time series and corresponding Fourier
spectra are displayed in Figures 3 and 4, respec-

tively, for simulations done with no projections
and projections with 150 (ue=2 = 0.01) and 150
(n = 0.0) harmonic modes. The time series (Fig. 3)
shows that the average angle (~70°) is well con-
served upon projection for the trajectories (b) and
(c), all of them being started from the same config-
uration and performed with the same heavy water
model. Figure 3a shows that a different starting con-
figuration together with the use of standard water
yields an average angle around 75°. This probably
corresponds to the existence of several basins of at-
traction for CTE. The trajectory (d) shows the angle
variation for N = 150, u = 0.0 (the asymptotic
value of this angle is ~30°), which corroborates the
undesirable effect of increasing N’, while keeping
the evolution eq. (5) with u = 0.

The Fourier spectra (Fig. 4) show two interesting
features. First, all the spectra show a typical power
law decay that is quite well preserved by the pro-
jections, independently of the number of harmonic
modes. Second, the characteristic frequency of the
time series (here identified with the maximum of
the spectra) depends on the number of harmonic
modes retained in the projection. Here, a number
of around 50 modes and © = 0 seems to yield
satisfactory results concerning the position of the
characteristic frequency (4.5 ps vs. 6 ps). Increasing
this number to 150 and adding the bond correc-
tions with ne=2 yields a low-frequency component
not present in the nonprojected trajectory, but also
a secondary frequency quite similar to that of the
reference trajectory. Notice that a similar variations
of the characteristic frequencies are observed upon
changes on the parameters used in the electrosta-
tic computations (cf., for instance, Figs. 5 and 9 of
ref. 29 obtained by changes in the electrostatic cutoff
distance). We, therefore, conclude that the present
model dynamics seems to fairly reproduce the angle
variations between the o and B8 domains.

In Figure 5 are shown the dihedral fluctuations
observed during the projected and nonprojected tra-
jectories, as well as their mean averages. As before,
we also consider the variations of the reference tra-
jectory projected onto the first 50 harmonic modes.
From this figure, it is clear that, although the av-
erage values are (globally) well preserved upon
projection, the fluctuations are reduced by almost
a factor 2. As before, the projected dynamics are
able to quite well reproduce the projected dihedral
fluctuations. The reduction of the dihedral fluctu-
ations can be easily understood by saying that the
projection acts as a filter, keeping only the collective
motions, all the local movements being discarded.
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(b)

FIGURE 2. (a) Ribbon representation of CTF after 200 ps of standard dynamics. (b) Ribbon representation of CTF
after 200 ps of projected dynamics with N’ = 50 and i = 0. (c) Ribbon representation of CTF after 200 ps of projected
dynamics with N’ = 150 and = 0. (d) Ribbon representation of CTF after 200 ps of projected dynamics with N' = 150

and e 2 =0.01.
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(d)
FIGURE 2. (Continued)
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FIGURE 3. Time series of the angle between the «-B
and «-C helical axis computed with: (a) standard water
trajectory, (b) heavy water nonprojected trajectory,

(c) projected trajectory with 150 modes and

we~—2 =0.01, (d) projected trajectory with 150 modes
and u = 0.

In Figure 6 are displayed the fluctuations in the
c1—C; plane, obtained from the reference and pro-
jected trajectories. The agreement between the two
plots should be expected from the closeness of the
rms fluctuations of the positions of the C* atoms, as
those are mainly due to collective fluctuations. This
plot also gives some information on the volume of
phase space explored by the considered trajectory.

relative frequency spectrum

frequency (ps™")

FIGURE 4. Relative power spectrum of the angle
between the «-B and «-C helical axis computed with:
(a) standard water trajectory (connected line),

(b) heavy water nonprojected trajectory (dashed line),
(c) projected trajectory with 50 modes and . = 0 (short
dashed line), (d) projected trajectory with 150 modes
(long-short dashed line) and e 2 = 0.01.
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FIGURE 5. Average and fluctuations of dihedral angles
for, respectively, the reference trajectory (continuous
line), the projected (50 modes) reference trajectory (long
dashed line) and the projected dynamics (50 modes)
(short dashed line): (a) average of ¢ dihedrals,

(b) fluctuations of ¢ dihedrals, (c) average of
dihedrals, (d) fluctuations of ¥ dihedrals.

Figure 6 shows that this volume is not significantly
reduced by the projected dynamics. It is interest-
ing to note that, here, the ¢; mode is different from
the first quasiharmonic mode, as its fluctuations are
lower than those of ¢;.

Finally, it is also of interest to quantify the even-
tual geometric distorsion of the protein induced
by the rescaling of the bonded interactions. To do
so, we have measured the average bond distances
along the backbone of the protein, as well as the
C,—C; distances in the lateral chains. It turns out
that all these lengths are, on average, slightly longer
than the corresponding equilibrium distance, the
elongation being typically between 2 and 3%, and
not exceeding 5% of this distance. Similar effects
can be observed for the angles between successive
bonds.

60 |
40 |
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o ”0r

_20 Lo P VI IV R Y B S WP
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FIGURE 6. Trajectory in the c1—c2 plane: (a) projected
trajectory with 50 modes, (b) reference trajectory.
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Concluding Remarks

In this work, we have considered some aspects
of the extension of our previous work to simulate
proteins in vacuum to the more realistic situation of
proteins surrounded by a solvent. Furthermore, we
have extended the validity of our method to bases
constituted by harmonic modes, instead of the qua-
siharmonic used in ref. 13. This reduces the a priori
information needed to run the projected dynamics
to the determination of some particular minimum,
and to the computation of the corresponding har-
monic modes. With the help of methods such as
those developed in ref. 9, this is significantly less
demanding than the computation of quasiharmonic
modes.

The main conclusion of this study is the feasabil-
ity of computing molecular dynamics trajectories
using rather large time steps, at the same time keep-
ing the properties related to collective motions, such
as the angle fluctuations considered here. The effec-
tive speedup obtained both in parallel and scalar
architectures is close to optimal (a factor 9 with a
time step of 10 fs), indicating that the additional
overhead implied by the projection onto normal
modes is fairly negligible. The major deficiency of
the present model is the use of a “viscous” sol-
vent (obtained through the artificial increase of the
water hydrogen mass). This point can probably be
circumvented through the use of implicit solvent
models. Finally, the extension of the present method
to the more general situation where the reference
configuration of the protein is allowed to rotate and
translate is clearly needed to uncover interesting
situations such as the dynamical behavior of trans-
membrane proteins.
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