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Abstract. We consider a model for protein dynamics in
which only certain collective, global motions are al-
lowed. These directions are given by the slowest
harmonics modes, as given in the reference frame of
the protein. Furthermore, the latter is allowed to rotate
and translate in response to interactions with other
molecules. The model is obtained by projecting the
(averaged) Newton equations onto this set of harmonic
modes. We show that the subsequent homogenization of
the time scales allows time steps one order of magnitude
larger than the standard ones. This homogenization is
also shown to be a necessary ingredient in order to get
meaningful statistics of the trajectory.
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1 Introduction

Many functional proteins are characterized by the fact
that their biological function requires some internal
motion of collective character. Typical examples include
the binding of a substrate or, in a more general way, the
transmission of conformational changes to a distant site,
as in allosteric mechanisms. For instance, in the case of
citrate synthase, the binding of coenzyme A induces an
18° rotation of the small domain around an axis located
near residue 274, resulting in the so-called hinge-bending
motion [1-3]. The latter induces the closure of the cleft
between the two domains of the protein and, as a direct
consequence, the closure of the substrate binding site.
An interesting question is whether these collective
motions arise from the coupling with an exterior agent
(ligand) or if they are already present as an intrinsic
motion of the protein. This question has been settled in
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Ref. [4] for the case of triosephosphate isomerase where it
has been shown (experimentally) that loop closure is “not
ligand gated but is a natural motion of the protein”.
Similar results have been obtained with lysozyme [5].

From these experimental results, it seems logical to
attempt a description of protein dynamics in terms of
collective degrees of freedom, including only those
directly related to the protein function. Such an idea un-
derlies several molecular dynamics methods already dis-
cussed in the literature and which we now briefly mention.

In terms of the a posteriori analysis of protein tra-
jectories generated by molecular dynamics simulations,
two related methods have been extensively used. One is
based on normal-mode analysis [6, 7], namely, the fluc-
tuations of the atomic positions 6X;(¢) are described as a
superposition of normal modes:

LA
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where N, is the number of atoms and

0Xi(1) =

Xi(t) = Xi(1) — X}

is the position fluctuation of the ith atom, Xi0 is a reference
conformation of the protein (the average over some
trajectory or a minimum energy conformation), and ¢, (i)
is the amplitude of the nth harmonic mode at the ith atom.
This description has recently been shown to give an
accurate picture of X-ray diffusive scattering of protein
crystals [8]. Moreover, it has been shown that, in several
cases, for example, hexokinase [9], lysozyme [7], citrate
synthase[10], etc., the conformational change upon ligand
binding observed by crystallography is strongly correlated
with (one of) the slowest harmonic modes. All these facts
give some support to the idea that low-frequency normal
modes contain the necessary information to accurately
describe collective motions. It should also be mentioned
that the slowest normal modes can be efficiently computed
using extremely simplified force fields [11]. Other methods
inspired from the work in Ref. [12] have also shown that
the approximate computation of low-frequency harmonic
modes can be done quite cheaply.



The other approach is based on the determination
of the so-called essential dynamics [13]. Formally, the
equality [1] is used again, but this time, the vectors
¢,(i) are the eigenvectors of the covariance matrix
(0X;(¢)0X;(¢)) ((,) means time average). In the following,
these eigenvectors are noted ¥, (i) and are termed an-
harmonic modes. For a stationary process, the W,(i)
vectors provide an optimal decomposition of the fluc-
tuations 0X;(¢). In the present context, this means that
the description provided by the anharmonic modes is, by
construction, more accurate than that provided by the
harmonic modes. However, it should not be concluded
from this that harmonic modes are uninteresting. In fact,
anharmonic modes have at least two main drawbacks:
the covariance matrix needs some potentially long tra-
jectory to be computed [14] and so far there is no ap-
proximate method to compute the ¥, (i) vectors. In spite
of this, the anharmonic decomposition has been exten-
sively used [13, 15-18] in the a posteriori description of
molecular dynamics trajectories, as well as data coming
from crystallographic structures. In particular, further
analysis of the correlation matrix has revealed the exis-
tence of different types of anharmonic modes, describing
a rich hierarchy in the protein motion, strongly corre-
lated to the roughness of the energy landscape [19]. The
method has also been used as a basis for a phase-space
exploring algorithm [20].

Here, we investigate a different question, namely how
to obtain protein trajectories on the basis of the hy-
pothesis that collective coordinates provide an accurate,
although approximate, description of protein fluctua-
tions. In other words, we do not want to analyze a tra-
jectory generated through standard methods; our goal is
to generate the protein fluctuations that can be related to
the collective motions. More precisely, we will assume
Eq. (1) (or its generalization, Eq. 2) and derive evolution
equations involving only the collective motions, identi-
fied here with the low-frequency normal modes ¢,(i).
Then, our goal is to derive evolution equations for the
amplitudes ¢,(¢), n=1,...N’, in such a way that the
reconstructed protein trajectory is ‘similar’ to the non-
projected one. The parameter N’ is the number of re-
tained harmonic modes (it corresponds to a frequency
cutoff) and is a free parameter of the model. It has been
shown [13, 15-18] that for values N’ ~ 102N, the rel-
ative error made when truncating the sum in Eq. (1) to
N’ terms is of the order of 1072,

In the following we compare three types of trajectories:
reference trajectories (RT), obtained from standard mo-
lecular dynamics simulations, projected RT (PRTN'),
obtained from a RT trajectory by a projection onto the set
{p,(i),n=1,...,N'}, and finally a projected trajectory
(PTN'), obtained from the model equations discussed la-
ter. The main motivation of our approach is the intuition
that, when considering only the large amplitude (slow)
motions of the protein, large time steps can be used. This
simple idea has already been considered by several au-
thors. Perhaps the closest to our approach is the so called
MBO(N)D method [21], in which the molecular system
is substructured by collecting groups of atoms into rigid
or flexible bodies. The flexibility is accounted for by an
assumption generalizing Eq. (1), namely:

Xi(t) = T(t) + R(0) | X7 +\/Lm—i”zw;cn(t)%(i) ; (2)

where R(f) [or T(¢)] is a rotation matrix (or a
translation vector), both being time-dependent. In
Eq. (2), the relation between Cartesian and harmonic
coordinates is assumed to hold for each of the elastic
bodies of the substructuring. Here, we consider Eq. (2)
applied to the whole protein. In this sense, we are
considering here the limit of roughest substructuring in
MBO(N)D.

It is shown later that the MBO(N)D approach re-
quires some corrections in order to account for the
protein fluctuations as measured in RT. The reason is
that the MBO(N)D method was derived from methods
developed in the context of dynamics simulations of
large complex mechanical structures in the aerospace
industry. In this case, only elastic forces are involved,
and the internal dynamics of each body is characterized
by rather homogenous time scales. This is not the case
for proteins, where bonded and nonbonded interactions
are characterized by widely different time scales and
some specific treatement (time homogeneization [22, 23])
is needed. This effect is not quite noticeable when con-
sidering ““small” systems, such as those considered in
Ref. [24], where a particular case of the MBO(N)D
method was also studied, nor in the hierarchical ap-
proach of Durup [25], in which some correcting terms
cancel by construction, as explained later. To the best of
our knowledge, the first place where Eq. (2) was used
as a basis for a dynamical model of macromolecules is
Ref. [26].

The rest of the article is organized as follows. In
Sect. 2, we explain how time homogeneization [22, 23]
leads to evolution equations for which the protein fluc-
tuations and the volume explored in phase space are
similar for the PTs and non PTs. We do this in the
simpler case of Eq. (1) and consider the more general
case in Sect. 3, where a novel algorithm for the coupling
of the internal degrees of freedom and the rotational and
translational degrees of freedom is given.

2 Evolution equations without overall rotations
translations

In this section, we study the particular case of a single
protein in vacuum, neglecting the overall translations
and rotations. We start from Eq. (1) and substitute this
approximation in the Newton equations. Using the
orthogonality of the harmonic modes, »; ¢,(i)¢, (i) =
Onm, the evolution equations for the amplitudes c,
read:

dZCn__i (i) 2E XS )
dt2 - - (pn l \/nTlaX i \/’71 — cl’l(pnl

where E stands for the energy of the system.



In order to check how well the model (Eq. 3) works,
let us first consider the case of decalanine, a small pep-
tide that forms a well defined o helix. The N and C
terminal ends contain CH3CO and NHCHj; groups, re-
spectively in order to neutralize the charges normally
present at the ends of this peptide at pH 7. We use a
united-atom representation for the CH and CHj groups,
the resulting model containing 66 ‘“atoms’. All the
electrostatic and van der Waals forces are taken into
account, the diclectric constant is set to 1, and all the
bonded interactions are as defined in the param19 force
field in CHARMM [27].

The root-mean-square (rms) fluctuations of the C*
atoms as a function of the highest frequency included in
the projection are shown in Fig. 1. Trajectories of 10 ps
are obtained using either the Newton equations, then
projecting the trajectory (PRT, open squares) or the
projected Newton equations (Eq. 3) (PT, filled squares).
The data collected from the PRT show that the ap-
proximation given by the slowest normal modes is ex-
tremely efficient: for a cutoff frequency of 200 cm™!
(corresponding to about 50 normal modes), the fluctu-
ations in the PRT amount to 95% of those in the RT;
however, the PT displays less than 50% of these fluc-
tuations. Actually, as shown in Fig. 1, increasing the
dimension of the projected subspace does not really help.
One can conclude that the model equations (Eq. 3) are
not quite satisfactory. Note that, of course, for very low
temperatures, where the protein is mostly harmonic,
model Eq. (3) provides the correct fluctuations.

Roughly speaking, although the approximation of
Eq. (1) is reasonable, the additional approximation
made in Eq. (3), namely,

0 ! N/c i
E(Xi)NE<X,~ +\/n7; nqan()) ;

is not justified, mainly because E presents strong
gradients in the directions corresponding to the stiffest
directions that control bond lengths and angles. As soon
as small deviations from the equilibrium values of these
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Fig. 1. Spatial fluctuations of decalanine as a function of the
frequency cutoff used either to generate the projected trajectory
(PT) (filled squares) using Eq. (3) or to obtain the projected
reference trajectory (PRT') (open squares)

internal coordinates occur, as is the case when using
the truncated projection involved in Eq. (1), very large
restoring forces take place that freeze the protein
motion, thus explaining the behavior observed in
Fig. 1. This intuitive argument also explains why the
projected dynamics “works™ for small clusters held by
van der Waals forces [24] or in situations where the
vectors ¢, (i) are such that the projections of the steepest
forces are mostly canceled [25].

As stated in the Introduction, one way out is to
“homogenize” the interactions. One possible method
[23] to do this is to consider the limit in which the
bonded interactions are infinitely stiff. This amounts to
restraining the dynamics to the dihedral space, freeezing
the bonds and angles to their equilibrium values. The
resulting evolution equations can be written in several
ways [23, 28]. We adopt the approach advocated in
Ref. [23] and consider the evolution equations:

dz)(i _ 6Eslow J) aEfast aEFixman (4)
T AN ax;

Here, Egow stands for all the energy terms minus the
bond and angle contributions, Epg gathers these two
fast terms, and Epjxman 1S @ correcting term arising in the
limiting procedure, first pointed out by Fixman [29] in
the context of polymer dynamics. The factor A is the
Lagrange multiplier ensuring the constraint Epg = 0.
The mathematical procedure to obtain Eq. (4) amounts
to an averaging (in time) of the fastest oscillations. The
Fixman term is a consequence of the fact that the
average of products of terms of zero mean is not zero. It
is therefore related exclusively to the freezing of the
angles [23] to their equilibrium values.

In order to get the smoothed evolution equations for
the amplitudes c¢,, we take the scalar products of Eq. (4)
with the normal modes ¢,. In previous work [30], we
ignored the contribution coming from the Fixman po-
tential, uniquely on the basis of results obtained with
very small molecules. In those cases, it can be shown [23]
that this contribution is indeed small. Concerning the
AV Egs term, we have shown in Ref. [31] that, when the
number of harmonic modes increases, this term becomes
essential in order to maintain the compactness of the
protein. Notice also that 4 depends on the instantaneous
conformation of the molecule in a rather involved way.
Instead of computing at each time step its precise value,
we will make it constant. The equations that we propose
as a model for the time evolution of the amplitudes are,
therefore,

m;

d’c 0 ,
dtzn = - 5 (Eslow + /LEl"asl)

1 .
X + \/—m—lzm: Cmq)m(l)l
(5)

In other terms, this model amounts to a simple rescaling
of the bonded terms in Ef,g, by the factor A. In Ref. [30],
we studied the particular case 4 = 0. In fact, it is easy to
see that 1 < 1. Following the notations in Ref. [32]
and assuming for the sake of simplicity that only bond
length constraints are sought (k being a typical stifness
constant)
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In order to illustrate the results obtained with the
model Eq. (5), we generate 200-ps equilibrated trajec-
tories of a small protein, the carboxy terminal
fragment (CTF) of the L7/L12 ribosomal protein of
E. coli. The simulations are done in a vacuum, with a
distance-dependent dielectric constant and bonded
interactions as defined in the param22 force field in
CHARMM. This protein is particularly interesting in
the present context, because it has been shown
previously [33, 34] that it displays well-defined slow,
collective motions that can be quantified through the
measurement of the angle between two of the three o
helices present in this protein. In Fig. 2, we show the
rms fluctuations of the C* carbons, as a function of
the residue number and for three different values
N’ =100, 150, 200 of the number of retained har-
monic modes. For N’ = 100, 150, the trajectories PTN’
were generated with a time step of 10 fs and 2 = 0.01
(actually, A =0 would also work in these cases). For
PT200, we used a time step of 5 fs, in order to ensure
the stability of the trajectory. For the sake of
comparison, we have also included the rms fluctua-
tions corresponding to a trajectory with N’ = 200 and
A=1. It is clear from this figure that the position
fluctuations of the trajectories PTN’ generated by the
model Eq. (5) converge much faster to the real ones
than those generated by Eq. (3); however, it is also
clear that some additional fluctuations are missing in
the model. For instance, in Fig. 3 it is shown that the
fluctuations captured by our model are lower than the
ones actually taking place in the part of the phase
space spanned by the first 100 harmonic modes. The
situation improves for proteins interacting either with
the solvent [31] or with other proteins, as shown in the
next section. We address the reader to Ref. [31] for
further details concerning the properties of the pro-
jected trajectories of CTF, in particular the measure-
ment of the characteristic angle between the two
helices mentioned earlier.

r.m.s.fluctuations (8)

20 40 60
residue number

Fig. 2. The root mean square (rms) of the position of the C* atoms
as a function of the residue number for the reference trajectory
(RT) (continuous line), PT100 (open triangles), PT150 (open
hexagons), PT200 (filled triangles), and PRT200 (dashed line)

r.m.s.fluctuations ()
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Fig. 3. The rms of the position of the C* atoms as a function of the
residue number for the RT projected onto 100 modes (PRT100)
(continuous line) and for PT100 (dashed line)

3 Including overall rotations and translations

We now turn to the more general case of Eq. (2) and
derive evolution equations for both ¢,, R, and 7. The
equations for the overall translations are quite straight-
forward and are the same as in the case of a rigid body,
namely:

Z’”"T:ZF" . (6)

The equations for ¢, and R are derived in the Appendix.
Here, the main point is that there are fewer unknowns
(Q and ¢é,) than the number of equations (3N) to be
satisfied; therefore, the solution is not uniquely defined.
We define the problem in the least-squares sense and
show in the Appendix that it can be solved analytically.

The general structure of the evolution equations for
the overall rotations, R(z), and mode amplitudes, c,(),
(Egs. A3, A4 in the Appendix) is of the form.

i=f(a,a) . (7)
Because of the presence of a in the right-hand side of this

equation, the Verlet algorithm cannot be applied and the
Lobatto algorithm is needed instead:

. . de .
Apy1/2 = dn + Ef(anv dny1/2),

Ap+1 = ay + df dn+1/2a

. ) dr .
Qpyl = dpt1)2 + ?f(al’l+17an+l/2) :

In the present context, the variable a(¢) stands for the set
of unknowns R(¢), {c,(¢),n =1,...N'}. We have found
it useful to use the quaternion representation of the
rotation matrix,

G+ -GG 22(q1c122—612oq3)2 2(q193+909>)

R=\ 2(qi1q92+9093) 95—a91+9>—a5 2(0293—q0q1) | >
2193 =4092) 2243 +dod1) 95— 41— +43
9193 — 4092 9293 1749091) 90—491 — 49> 7943

(8)

with the constraint that ¢+ ¢} +¢35+¢3=1. The
angular velocity, Q, and its time derivative can also be



expressed as combinations of the time derivatives ¢; and
g; as explained in Ref. [35]. The resulting equations are
then exactly of the form of Eq. (7). The first of the three
steps of the Lobatto algorithm is an implicit equation,
easily solved by iteration. It should be noted, however,
that this iteration must be done in the following way (/ is
here the iteration index, the time index has not been
added in the sake of clarity)

W0 ==Y /mi(Zi Axi)+D (Vi ) éniRep, (i) Axi),

én,lJrl = Z(Zl : Rq)n(l)) - Ql+1 . (ﬁn ;

with initial conditions &, ;-0 = 0, otherwise the matrix
that has to be inverted becomes quickly singular as the
number of harmonic modes increases.

In order to check the model Eqgs. (A3) and (A4), we
generate molecular dynamics trajectories of the melittin
tretamer in vacuum. Melittin is the major component of
the venom of the honey bee that is responsible for lysis
of the cell membrane [36, 37]. This amphiphilic poli-
peptide contains 26 residues and adopts an a-helical
structure in very different environments, from detergent
micelles [38] and nonpolar solvents [39] to concentrated
aqueous salt solutions [40]. However, the tretamer as-
sociation is only found in aqueous salt solutions. Each
helix is actually separated into two segments by a proline
residue at position 14. Segment 1-13 is hydrophobic,
whereas the segment from Ala'® to GIn?® is amphiphilic.
This arrangement is at the origin of the tetramer
formation through hydrophobic contacts.

The initial configuration of the tretamer is such as
given in the Protein Databank (code 1IMLT). The sim-
ulations are done in vacuum, with a distance-dependent
dielectric constant, e = 80, and the CHARMM-22 force
field for bonded interactions. The equilibrated RT is
500-ps long. In generating the PT, we encountered sim-
ilar difficulties as in Ref. [30], namely, the starting con-
figuration, when projected, generates a great number of
high-energy steric contacts that have to be removed
through a sequence of extremely small time steps. Of
course, increasing the number of modes included in the
description fixes this problem partially, however this
imposes severe conditions on the time step that could be
used subsequently. In all the following, we used 44
harmonic modes for each of the four helices, resulting in
an overall counting of 200 degrees of freedom. The time
step used is 10 fs (the resulting speed-up is around 8), the
average rms of the total energy being less than 0.1 kcal/
mol for the 500-ps trajectory. Time steps of 20 fs could
also be used, resulting in a speed-up of 17 and a total
energy rms less than 0.2 kcal/mol. The position fluctu-
ations of the C* carbons along the backbone of the four
o helices are represented in Fig. 4, with the removal for
each helix of the overall translation—rotation motions.
The overall agreement seems quite satisfactory: the PTs
capture the pronounced mobility of the peptide ends
(residues 1 and 26 for each helix), but are, on average,
somewhat more rigid around the Pro'* residue. We have
also represented the observed fluctuations in PT44 with
no rescaling (4 = 1) of the bonded interactions: it is clear
that the rescaling considerably improves the similarity
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Fig. 4a—d. The rms position fluctuations of the melittin tetramer C*
carbons. a—d correspond to helices 1-4: RT (continuous line), PT44
(dashed line), PRTSS (short-dashed line)

between the PTs and non-PTs. Further insight is gained
by measuring the angle between segments 1-13 and
15-26. This is done using the command HELIX of
CHARMM and removing the four terminal residues
from each end. As can be seen in Fig. 5, the projection
onto 44 modes preserves well the average behavior of
this angle, measured on the first helix; however, the
fluctuations are less pronounced than in the RT.

4 Conclusions

In this article we have discussed a simple algorithm to
integrate the evolution equations of projected versions
of protein structures with time steps of about 10 fs.
Projecting provides a smoothed force field in which some
rescaling of the bonded interactions has to be taken into
account. This idea is quite similar to that used in the
simulation of large polyelectrolytes with blocking tech-
niques [41]. We have shown that such rescaling consid-
erably improves the convergence of (the characteristics
of) the PTs to the non-PTs. The same idea has been
extended to the more general case where several flexible
molecules interact. In this case, the coupling with
possible overall rotations of each molecules has to be
taken into account.
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Fig. 5. Angle between the 1-13 and 15-26 segments of helix 1: a
RT, b PT44



Although the results are quite satisfactory, in par-
ticular regarding the energy conservation properties,
there is clearly room for improvement, in particular
concerning the flexibility of the projected configura-
tions. We are currently exploring the addition of a
fluctuating forcing and a frictionlike term, coupled by
the fluctuation—dissipation theorem. The presence of
both terms is quite clear from theoretical consider-
ations, such as those developed in Ref. [42]. Such an
extended model boils down to generalized Langevin
equations in the space of the projected components.
The model considered here neglects completely such
terms. It should also be noted that these additional
terms can, in principle [43], be computed from short
nonprojected simulations.
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Appendix

Here, we derive the evolution equations for the ampli-
tudes, ¢, (¢), rotation, R(¢), and translation, 7(¢). We use
throughout the notation d=da/dz. We start
from Eq. (2) and derive twice with respect to time,
obtaining

Fi—rg:QAxi+QA(QAxi)

1 .
+2Q/\R<\/ﬁizn:dn(pn(z))
1 .
+R\/ﬁizn:dn<pn(l) ; (A1)
where
G=dyy =Xi—Xy, Ti=k, To=2X,,

X, being the position of the center of mass and Q the
angular velocity. Equation (Al) is easily obtained by
repeatedly applying the relation

A = Amoving +QA4

relating the time derivatives of a time-depedent vector,
4, in a fixed reference (4) and a moving reference,
Amoving- We rewrite Eq. (1) as

0=3% —Z+QA /myx; |

with

Zi = /mi(Ti = Tg) — /mQ N (Q A x;)
—2QARYdup, (i)

(A2)

and
2,‘ =R Z C”(pn(l) .
A simple counting shows that the system Eq. (A2) is ill-

posed, as it has fewer unknowns (N’ + 3) than equations
(3N,). A simple way out is to define the unknowns ¢, and

Q as given by the least-squares solution of Eq. (Al), i.c.,
they minimize the quantity

1 L
EZ(_ZI' + 24+ QA Ymix)

It is then straightforward to obtain

I0=— Z Vmi(Zi Axi) + Z (mZé,,Rgon(i) /\xi> ;

(A3)
b= 12 R, ()] = Q- G, , (A4)
where
G =D _/mixi AR, (i)
and I the instantaneous inertia matrix, i.e.,

I = inleg +xx), I = —le!x?, ey (AS)

with

X = (x},x7,x}) .
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